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Inversion Property of the Fundamental
Matrix in Trajectory Perturbation
Problems
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Systems described by ordinary linear differential
equations with time varying coefficients may be
analyzed conveniently using the concepts of state
variables and fundamental matrix. Characteris-
tically, the inverse of this matrix appears in the
state transition equation. An inversion property
of the fundamental matrix applicable to a class of
dynamic systems which includes as a member tra-
jectory perturbation problems is presented. This
property allows the inverse matrix to be obtained
by a simple rearrangement of eleinents of the
original matrix. When the matrix is of high
order, significant advantages accrue in both time
saving and numerical accuracy.

NCREASED emphasis has been given recently to the ap-

plication of linear perturbation techniques in studies of
trajectory and guidance problems.!™® The resulting per-
turbed equations of motion are given by a set of ordinary
linear differential equations with time-varying coefficients.
The solution of such a set can be facilitated greatly by the
concepts of ‘“‘state variables” and “fundamental matrices,”
where the state transition equations are expressed in terms
of these computable matrices. Characteristically, the in-
verse of the fundamental matrix appears in the equations.
It is recognized that inversion of high-order matrices can be
both time consuming and inaccurate even with the aid of
digital computers. Fortunately, in the case of perturbed
trajectories there exists an inversion property, which allows
the inverse to be obtained by a simple rearrangement of ele-
ments of the origin matrix. Such a property has been indi-
cated by McLean et al.? for the special case of coasting tra-
jectories. The purpose of the present paper is to extend the
inversion property to a class of dynamic systems which in-
cludes as a member trajectory motion influenced by an ac-
celeration forcing function (e.g., thrust acceleration) in addi-
tion to gravitational acceleration. Also, it is felt that the use-
fulness of the inversion property deserves wider attention.

State Equations and Fundamental Matrix

Consider a linear system described by a set of n first-order
differential equations. In vector and matrix notation

(ds/dt) — A@W)s@® = BOS®) M
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where s is an n-dimensional state vector, f is an m-dimensional
veetor of forcing inputs applied to the system, and A and B
are n X n and n X m coeflicient matrices, respectively.
The state is defined as a set of output variables from which
the entire future behavior of the system may be determined,
provided the future inputs to the system are known. As-
sume initialization of the problem at a fixed time #, with cor-
responding state s(f). In general two types of problems are
admitted: one where the region of interest lies between
fixed-time interval (f,, ¢/), and the other where a terminal ¢,
is not specified. In either case the solution of Eq. (1) may
be facilitated by introducing an n X n fundamental matrix
A(t), which satisfies the following equation:

(dA/dt) + ADA®) =0 2)

and is subject to an arbitrary boundary condition to be dis-
cussed presently. In the literature, Eq. (2) often has been
called the adjoint equation to Eq. (1), and A is the adjoint
matrix.

Premultiplying Eq. (1) by A, postmultiplying Eq. (2) by
s, and adding the two modified equations yields

(d/dt)(As) = ADOBOS®)

When this equation is integrated between the limits ¢ and
ts, the general state transition equation is

{7
sl = A= WAWs(t) + A~ f AOBOSO (3)

t1

Nonsingularity of A is assumed, and the superscript —1 de-
notes the matrix inverse operation. Several interpretations
of this equation are as follows:

1) Suppose the problem-definition does not specify a fixed
terminal time. A convenient choice of boundary condition
for Eq. (2) is A{le) = I (identity matrix). Letting &, =
and &, = t, Eq. (3) gives the general solution for s(f) in terms
of the initial state and the effect of f(t) over the interval
(to, t). If A, B, and f are assumed to be known functions of
time, Eq. (1) does not have to be solved repeatedly for differ-
ent values of the initial state.

2) Suppose a fixed terminal time ¢, is specified and the
terminal state is of primary interest. A convenient choice of
boundary condition is A(f;) = I, and A(f) is computed by
integrating Eq. (2) backwards in time. Letting ¢z = ¢; and
h = t, Eq. (3) gives the terminal state in terms of the in-
stantaneous state and the effect of f(t) over (¢, t/). If a de-
sired terminal state is specified and s(t) is measured, then
synthesis of a control function f(f) may proceed from the
terminal form of Eq. (3).

3) Consider a dynamic process that is to be controlled
repetitively based on sampled measurements of the time-
varying state. Assume that the measurements are con-
taminated by random mnoise, and assume that a statistical
filtering and prediction procedure is employed to improve
the state measurements. The deterministic prediction equa-
tion is given by Eq. (3) and may be operated on statistically.

The previous development indicates the requirement for
inverting the fundamental matrix. An inversion property,
which allows great simplification of this operation, is pre-
sented now for a special class of systems.

Inversion Property of the Fundamental Matrix

Consider a class of systems having the following restric-
tions: 1) the number of state variables is even; and 2) the
system coefficient matrix A4 can be partitioned into four
square submatrices, each of order n/2, such that the diagonal
submatrices are equal to the null matrix and the off-diagonalk
submatrices are symmetrical.

A common example of an even-ordered state vector is a set,
of output variables and their first derivatives. If a system
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formulation does not meet the second restriction, there may
exist a transformation of variables which allows it to do so.

The fundamental matrix A may be partitioned into four
square submatrices each of order n/2:

It is proposed to show that, if the identity matrix is chosen
as a boundary condition for A, then

A T H ___A T
AT = I:_A:TATT] ©)

The superseript T denotes the matrix transpose operation.
Note that the inverse matrix is obtained by a simple re-
arrangement of elements, i.e., no addition or multiplication is
necessary. A straightforward proof of the inversion property
follows.

By definition, AA™! = I. Differentiation of this expres-
sion and substitution from Eq. (2) yields

dA~1/dt = AN (6)
Now partition A~ into four submatrices, each of order n/2:
P; ' P,
-1 = | Sili2 )
A l: Py P4] @
Also, as stated previously, 4 may be partitioned as
oM MT=M
4= [NO] vy ®

Equation (6) is given in partitioned form on substitution of
Eqgs. (7) and (8):

d_’[.f}__;__g?_ - I:MP“‘_'_Z_W_P_"‘ (9)
dt P35P4 - NP, ! NP,

Now taking the transpose of the partitioned matrices A and
A, using the symmetrical property of M and N, and substi-
tuting into the transpose of Eq. (2) gives

d {MTAgT:I _ l: —NAzT_i —NAS ] (10)
df AT VAT | L —MAT D —MAST
Finally, a term-by-term comparison of Eqs. (9) and (10)
shows that the two differential equations are equivalent if

P i P AT —AT
-[EE]- ] w

In order that (11) be true in general, the boundary conditions
on each of the partitioned matrices must be the same. How-
ever, it has been assumed that the boundary condition is
the identity matrix, e.g., A(te) = I. Thus, A7 (&) = AT(f) =
I. Hence, the boundary conditions are the same, and the
proof of Eq. (5) is complete.

A more general inversion property can be extended to the
case where the boundary condition on A 7s not the identity
matrix. For example, if the actual quantities of interest are
certain linear combinations of the terminal state variables,
then A(f;) may not be chosen arbitrarily. The inversion
property is derived from Egs. (10) and (11) by showing that
(d/dt)(PA) = 0. Thus, the product of P and A must be
constant for all time. From Eqs. (4) and (11),

'X;T"A“;':"A‘;T‘x;'rx;'ﬁ\;":'x;;fx;] = K (const) 1)

Multiplying through by P~ and theén inverting gives
At = KTP = ‘1[ ---------- e (13)
3

Note that Eq. (5) is a special case of Eq. (13) when K = I.
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The usefulness of Eq. (13) is apparent, since K is obtained
from Eq. (12) for any choice of boundary condition, and
being constant it needs to be inverted only once. Also, if
A is obtained by numerical integration, Eq. (12) may be used
as a check on the accuracy of the integration.

Application to Trajectory Problems

Motion of a space vehicle expressed in fized Cartesian co-
ordinates (x, y, z), which is influenced by a gravitational
potential field Uz, y, ) and a nonpotential acceleration
vector f(£), may be described in component form by the
set of six equations

dv,ydt = —(QU/ox) + f.
dx/dt = Uy

where the partial derivatives are the components of the
gradient of U and are continuous in the region of interest.
The nonpotential acceleration components may be, for ex-
ample, due to thrust. The vector velocity, position, and
acceleration may be defined as

Vs Z fx
=livv:| 7'=|:y:| fz[fu} (15)
V. e fz

If a known reference trajectory solution of Egs. (15) is
assumed, linear perturbation techniques may be used ef-
fectively to investigate perturbations about the reference
and corrective guidance maneuvers. If Egs. (14) are ex-
panded about the reference in a Taylor series and all terms
higher than first order are neglected, the perturbed equa-
tions of motion may be written as

ds d[ & o

i Jt[;s;«] =4 [5;] + Bof (16)
where the six-dimensional state vector s is defined in terms
of the components of the perturbed velocity and position;

the order of partitioning is arbitrary. It can be shown that
the matrices 4 and B in partitioned form are

B - [(I)] a”)

where M is made up of the second partials of U with respect
toz,y,andz: :

r—=>y,z (14)

U U U
ox? dxdy Ox Oz
22U oUW
M=Mo = - drdy dyt Ay oz (18)
oy oUW
Ordz Oy oz 0z

Since M is symmetric, the linearized trajectory problem
falls into the category of system discussed previously, and
the inversion property of fundamental matrices is applicable.
It is important to point out, however, that the inversion
property is not true if the problem is formulated in other
than fixed Cartesian coordinates.

If the forcing acceleration is due to thrust, f() = F(&)/
m(t), where the thrust force F(f) and vehicle mass m(t) may
be subject to independent perturbations. Although it is
possible to express &f in terms of ém and 8F and to
avoid reformulation of the problem as just given, it may be
desirable to treat ém as a state variable and 8F as the forcing
function. In this case the dimension of the state vector in-
creases to seven, and the inversion property as given by Eq.
(5) does not hold; however, a modified formula, which still
allows rather simple inversion, may be developed. The
auxiliary relation between mass flow rate, thrust, and jet
velocity is added to Eqs. (14), and f is replaced by F/m.
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Equation (16) then becomes

d o o
—| & | =A]| o6r |+ BoF (19)
dt ém om

where the new coefficient matrices A and B are changed
accordingly from KEq. (17). Specifically, A is increased by
a seventh row and column and may be partitioned as

.,,0__‘1._‘7!4__5__?_ 1 Fx
4= [4_!___?__9_,':._9] o= —— [ F} (20)
07070 F.

Correspondingly, the fundamental matrix A is increased by a
seventh row and column. Since both velocity and position-
state transition depend upon mass, whereas mass-state transi-
tion depends only upon mass in a one-to-one fashion, A may

be partitioned as
A
A= [{}?_i_{‘:ﬂ& il (21)
0i0i1

Aboundary = I

where A; and A, are each three-dimensional vectors. Pro-
ceeding as in the previous section, it can be shown that A~

is given by
AL A
AT = [_r_é_{_f_____f}}fi}?g_] (22)
0 ! 0 i1
where
P = ‘—A4T)\1 + AzT)\z

P 2= AgT)\l - AlT)\g
Thus, the modified inversion property retains the major
characteristic of simple term rearrangement, although some

algebra is required to obtain the elements of p; and p,.
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Flow Field in Hypersonic Re-Entry

Herscren WeL*
Unaversity of Michigan, Ann Arbor, Mich.

HE subject of this note is the sphere moving at a uniform

hypersonic velocity in free molecule flow. Three formu-
las, each different because of different simplifying assump-
tions, have appeared in the literature to approximate the
number density of diffusely reflected particles along the
symmetry axis in the direction of the sphere’s motion relative
to the fluid. The purposes of this note are 1) to compare
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these formulas for number density and point out the causes
for their differences, and 2) to present formulas and numerical
results for the mean velocity field of the diffusely reflected
molecules.

The three formulas for number density n of reflected par-
ticles normalized by the unperturbed number density are
given here in terms of distance z in units of sphere radii and
the sphere velocity V relative to the fluid and normalized
by the most probable thermal speed in a Maxwellian dis-
tribution, (257 /m)¥/2, where

k Boltzmann’s constant
T = temperature of the unperturbed gas
m = mass of a molecule of the gas

It

f

Formulas are given by Gurevich! as
n(z) = (1/22) n[(z + 1)/(x — 1)} M
and by Probstein? as
n(x) = 2(m)'2V Fo(x) @
where
Fo(@) = [(22° + 1) — (2* + D(&* — 1)']/(327)

A formula that holds not only on the symmetry axis but also
for all angles # was given by Dolph and Weil3t as

n(r,0) = 3(To/Te)?{[1 — (1 — p7%) 2] X
exp(— V22 cos?0) — 1(m)"2V cosb erfe(Vr cos®)Fo(p)}  (3)

where erfe( ) is the complementary error function, p is the
radial distance normalized by the sphere radius, 7. and T%
are, respectively, the temperatures of the unperturbed gas
and of the sphere, and # = 7 corresponds to the = axis used
in Egs. (1) and (2). Equation (3) reduces along this axis to

n(@) = 3(To/T)?{[1 — (1 — z75)1] exp(—V%?) +
(mV2V erfe(—Va)Folz)} (4)

Note that Egs. (1) and (4) both are finite at = 1, whereas
(1) becomes infinite as x approaches unity, which is not
realistic. Both Eqgs. (1) and (4) have slopes that become
negatively infinite like

real positive constant
2(z — ]2

as z — 1. Probstein points out that this singularity in slope
is connected with molecules of grazing incidence.
For large values of V, erfe(—Vp) — 2 and Eq. (4) reduces

to
n(x) ~ (m)12V(To/Ty)V?Fo(x)

When T, = T4, this is one half the value given by Eq. (2).

Both Egs. (1) and (2) were derived assuming that the
emitted particles are all traveling with the same speed and
invoking the inverse square law for decay of flux issuing from
each surface element. Equation (3) is the result of integrat-
ing, over velocity space, a close approximation to the dis-
tribution function determined by Wang Chang? for a Max-
wellian distribution function with superimposed mean speed
and perturbed by a diffusely reflecting sphere.

The differences between formulas (2) and (3) stem from
two causes. To derive Eq. (2), a boundary condition for
flux at the surface in terms of particle number density was
used. To obtain this relation, the incident gas was assumed
to have a Maxwellian distribution with a superimposed mean

T In Ref. 3 it was assumed that T, = T5. In addition, the
gecond term of n was written with a factor I; given separately.
By error, Is was written as 27 times the correct expression. The
correct expression was used in the subsequent numerical evalua-
tion of Eq. (3) for V = 5in Ref. 3 and also (with the temperature
factor)in Ref. 5.



